Railway electrification is the use of electric power for the propulsion of rail transport. Electric railways use either electric locomotives (hauling passengers or freight in separate cars), electric multiple units (passenger cars with their own motors) or both. Electricity is typically generated in large and relatively efficient generating stations, transmitted to the railway network and distributed to the trains. Some electric railways have their own dedicated generating stations and transmission lines, but most purchase power from an electric utility. The railway usually provides its own distribution lines, switches, and .
Power is supplied to moving trains with a (nearly) continuous conductor running along the track that usually takes one of two forms: an overhead line, suspended from poles or towers along the track or from structure or tunnel ceilings and contacted by a pantograph, or a third rail mounted at track level and contacted by a sliding "pickup shoe". Both overhead wire and third-rail systems usually use the running rails as the return conductor, but some systems use a separate fourth rail for this purpose.
In comparison to the principal alternative, the diesel engine, electric railways offer substantially better energy efficiency, lower Exhaust gas, and lower operating costs. Electric locomotives are also usually quieter, more powerful, and more responsive and reliable than diesel. They have no local emissions, an important advantage in tunnels and urban areas. Some electric traction systems provide regenerative braking that turns the train's kinetic energy back into electricity and returns it to the supply system to be used by other trains or the general utility grid. While diesel locomotives burn petroleum products, electricity can be generated from diverse sources, including renewable energy.P. M. Kalla-Bishop, Future Railways and Guided Transport, IPC Transport Press Ltd. 1972, pp. 8-33 Historically, concerns of resource independence have played a role in the decision to electrify railway lines. The landlocked Switzerland which almost completely lacks oil or coal deposits but has plentiful hydropower electrified its network in part in reaction to supply issues during both World Wars.
Disadvantages of electric traction include: high that may be uneconomic on lightly trafficked routes, a relative lack of flexibility (since electric trains need third rails or overhead wires), and a vulnerability to power interruptions. Electro-diesel locomotives and electro-diesel multiple units mitigate these problems somewhat as they are capable of running on diesel power during an outage or on non-electrified routes.
Different regions may use different supply voltages and frequencies, complicating through service and requiring greater complexity of locomotive power. There used to be a historical concern for double-stack rail transport regarding clearances with but it is no longer universally true , with both Indian Railways and China Railway regularly operating electric double-stack cargo trains under overhead lines.
Railway electrification has constantly increased in the past decades, and as of 2022, electrified tracks account for nearly one-third of total tracks globally.
In 1881, the first permanent railway electrification in the world was the Gross-Lichterfelde Tramway in Berlin, Germany. Overhead line electrification was first applied successfully by Frank Sprague in Richmond, Virginia in 1887-1888, and led to the electrification of hundreds of additional street railway systems by the early 1890s. The first electrification of a mainline railway was the Baltimore and Ohio Railroad's Baltimore Belt Line in the United States in 1895–96.
The early electrification of railways used direct current (DC) power systems, which were limited in terms of the distance they could transmit power. However, in the early 20th century, alternating current (AC) power systems were developed, which allowed for more efficient power transmission over longer distances.
In the 1920s and 1930s, many countries worldwide began to electrify their railways. In Europe, Switzerland, Sweden, France, and Italy were among the early adopters of railway electrification. In the United States, the New York, New Haven and Hartford Railroad was one of the first major railways to be electrified.
Railway electrification continued to expand throughout the 20th century, with technological improvements and the development of high-speed trains and commuter train. Today, many countries have extensive electrified railway networks with of standard lines in the world, including China, India, Japan, France, Germany, and the United Kingdom. Electrification is seen as a more sustainable and environmentally friendly alternative to diesel or steam power and is an important part of many countries' transportation infrastructure.
High speed lines in France, Spain, Italy, United Kingdom, the Netherlands, Belgium and Turkey operate under 25kV, as do high power lines in the former Soviet Union as well.]]
Electrification systems are classified by three main parameters:
Selection of an electrification system is based on economics of energy supply, maintenance, and capital cost compared to the revenue obtained for freight and passenger traffic. Different systems are used for urban and intercity areas; some electric locomotives can switch to different supply to allow flexibility in operation.
There are many other voltage systems used for railway electrification systems around the world, and the list of railway electrification systems covers both standard voltage and non-standard voltage systems.
The permissible range of voltages allowed for the standardised voltages is as stated in standards BSEN50163EN 50163: Railway applications. Supply voltages of traction systems (2007) and IEC60850.IEC 60850: Railway applications – Supply voltages of traction systems, 3rd edition (2007) These take into account the number of trains drawing current and their distance from the substation.
In the United Kingdom, 1,500VDC was used in 1954 for the Woodhead trans-Pennine route (now closed); the system used regenerative braking, allowing for transfer of energy between climbing and descending trains on the steep approaches to the tunnel. The system was also used for suburban electrification in East London and Manchester, now converted to 25kVAC. It is now only used for the Tyne and Wear Metro. In India, 1,500V DC was the first electrification system launched in 1925 in Mumbai area. Between 2012 and 2016, the electrification was converted to 25kV 50Hz, which is the countrywide system.
3kV DC is used in Belgium, Italy, Spain, Poland, Slovakia, Slovenia, South Africa, Chile, the northern portion of the Czech Republic, the former republics of the Soviet Union, and in the Netherlands on a few kilometers between Maastricht and Belgium. It was formerly used by the Milwaukee Road from Harlowton, Montana, to Seattle, across the Continental Divide and including extensive branch and loop lines in Montana, and by the Delaware, Lackawanna and Western Railroad (now New Jersey Transit, converted to 25kVAC) in the United States, and the Kolkata suburban railway (Bardhaman Main Line) in India, before it was converted to 25kV 50Hz.
DC voltages between 600V and 750V are used by most and trolleybus networks, as well as some Rapid transit systems as the traction motors accept this voltage without the weight of an on-board transformer.
The use of medium-voltage DC electrification (MVDC) would solve some of the issues associated with standard-frequency AC electrification systems, especially possible supply grid load imbalance and the phase separation between the electrified sections powered from different phases, whereas high voltage would make the transmission more efficient. UIC conducted a case study for the conversion of the Bordeaux-Hendaye railway line (France), currently electrified at 1.5kV DC, to 9kV DC and found that the conversion would allow to use less bulky overhead wires (saving €20 million per 100route-km) and lower the losses (saving 2GWh per year per 100route-km; equalling about €150,000 p.a.). The line chosen is one of the lines, totalling 6000km, that are in need of renewal.
In the 1960s the Soviets experimented with boosting the overhead voltage from 3 to 6kV. DC rolling stock was equipped with ignitron-based converters to lower the supply voltage to 3kV. The converters turned out to be unreliable and the experiment was curtailed. In 1970 the Ural Electromechanical Institute of Railway Engineers carried out calculations for railway electrification
at , showing that the equivalent loss levels for a system could be achieved with DC voltage between 11 and 16kV. In the 1980s and 1990s was being tested on the October Railway near Leningrad (now Saint Petersburg). The experiments ended in 1995 due to the end of funding.
The key advantage of the four-rail system is that neither running rail carries any current. This scheme was introduced because of the problems of return currents, intended to be carried by the earthed (grounded) running rail, flowing through the iron tunnel linings instead. This can cause electrolytic damage and even arcing if the tunnel segments are not electrically bonded together. The problem was exacerbated because the return current also had a tendency to flow through nearby iron pipes forming the water and gas mains. Some of these, particularly Victorian mains that predated London's underground railways, were not constructed to carry currents and had no adequate electrical bonding between pipe segments. The four-rail system solves the problem. Although the supply has an artificially created earth point, this connection is derived by using resistors which ensures that stray earth currents are kept to manageable levels. Power-only rails can be mounted on strongly insulating ceramic chairs to minimise current leak, but this is not possible for running rails, which have to be seated on stronger metal chairs to carry the weight of trains. However, elastomeric rubber pads placed between the rails and chairs can now solve part of the problem by insulating the running rails from the current return should there be a leakage through the running rails.
The Expo and Millennium Line of the Vancouver SkyTrain use side-contact fourth-rail systems for their supply. Both are located to the side of the train, as the space between the running rails is occupied by an aluminum plate, as part of stator of the linear induction propulsion system used on the Innovia Metro system. While part of the SkyTrain network, the Canada Line does not use this system and instead uses more traditional motors attached to the wheels and third-rail electrification.
As alternating current is used with high voltages, inside the locomotive, a transformer steps the voltage down for use by the traction motors and auxiliary loads.
An early advantage of AC is that the power-wasting resistors used in DC locomotives for speed control were not needed in an AC locomotive: multiple taps on the transformer can supply a range of voltages.
Separate low-voltage transformer windings supply lighting and the motors driving auxiliary machinery.
More recently, the development of very high power semiconductors has caused the classic DC motor to be largely replaced with the three-phase induction motor fed by a variable frequency drive, a special inverter that varies both frequency and voltage to control motor speed.
These drives can run equally well on DC or AC of any frequency, and many modern electric locomotives are designed to handle different supply voltages and frequencies to simplify cross-border operation.
In the US, the New York, New Haven, and Hartford Railroad, the Pennsylvania Railroad and the adopted 11kV 25Hz single-phase AC. Parts of the original electrified network still operate at 25Hz, with voltage boosted to 12kV, while others were converted to 12.5 or 25kV 60Hz.
In the UK, the London, Brighton and South Coast Railway pioneered overhead electrification of its suburban lines in London, London Bridge to Victoria being opened to traffic on 1December 1909. Victoria to Crystal Palace via Balham and West Norwood opened in May 1911. Peckham Rye to West Norwood opened in June 1912. Further extensions were not made owing to the First World War. Two lines opened in 1925 under the Southern Railway serving Coulsdon North and Sutton railway station. The lines were electrified at 6.7kV 25Hz. It was announced in 1926 that all lines were to be converted to DC third rail and the last overhead-powered electric service ran in September 1929.
Both the transmission and conversion of electric energy involve losses: ohmic losses in wires and power electronics, magnetic field losses in transformers and smoothing reactors (inductors).See Винокуров p. 95+ Ch. 4: Потери и коэффициент полизного действия; нагреванние и охлаждение электрических машин и трансформаторов" (Losses and efficiency; heating and cooling of electrical machinery and transformers) magnetic losses pp. 96–97, ohmic losses pp. 97–99 Power conversion for a DC system takes place mainly in a railway substation where large, heavy, and more efficient hardware can be used as compared to an AC system where conversion takes place aboard the locomotive where space is limited and losses are significantly higher.Сидоров 1988 pp. 103–104, Сидоров 1980 pp. 122–123 However, the higher voltages used in many AC electrification systems reduce transmission losses over longer distances, allowing for fewer substations or more powerful locomotives to be used. Also, the energy used to blow air to cool transformers, power electronics (including rectifiers), and other conversion hardware must be accounted for.
Standard AC electrification systems use much higher voltages than standard DC systems. One of the advantages of raising the voltage is that, to transmit certain level of power, lower current is necessary (). Lowering the current reduces the ohmic losses and allows for less bulky, lighter overhead line equipment and more spacing between traction substations, while maintaining power capacity of the system. On the other hand, the higher voltage requires larger isolation gaps, requiring some elements of infrastructure to be larger. The standard-frequency AC system may introduce imbalance to the supply grid, requiring careful planning and design (as at each substation power is drawn from two out of three phases). The low-frequency AC system may be powered by separate generation and distribution network or a network of converter substations, adding the expense, also low-frequency transformers, used both at the substations and on the rolling stock, are particularly bulky and heavy. The DC system, apart from being limited as to the maximum power that can be transmitted, also can be responsible for electrochemical corrosion due to stray DC currents.
Central station electricity can often be generated with higher efficiency than a mobile engine/generator. While the efficiency of power plant generation and diesel locomotive generation are roughly the same in the nominal regime,It turns out that the efficiency of electricity generation by a modern diesel locomotive is roughly the same as the typical U.S. fossil-fuel power plant. The heat rate of central power plants in 2012 was about 9.5k BTU/kwh per the Monthly Energy Review of the U.S. Energy Information Administration which corresponds to an efficiency of 36%. Diesel motors for locomotives have an efficiency of about 40% (see Brake specific fuel consumption, Дробинский p. 65 and Иванова p.20.). But there are reductions needed in both efficiencies needed to make a comparison. First, one must degrade the efficiency of central power plants by the transmission losses to get the electricity to the locomotive. Another correction is due to the fact that efficiency for the Russian diesel is based on the lower heat of combustion of fuel while power plants in the U.S. use the higher heat of combustion (see Heat of combustion). Still another correction is that the diesel's reported efficiency neglects the fan energy used for engine cooling radiators. See Дробинский p. 65 and Иванова p. 20 (who estimates the on-board electricity generator as 96.5% efficient). The result of all the above is that modern diesel engines and central power plants are both about 33% efficient at generating electricity (in the nominal regime). diesel motors decrease in efficiency in non-nominal regimes at low powerХомич А. З. Тупицын О.И., Симсон А. Э. "Экономия топлива и теплотехническая модернизация тепловозов" (Fuel economy and the thermodynamic modernization of diesel locomotives). Москва: Транспорт, 1975. 264 pp. See Brake specific fuel consumption curves on p. 202 and charts of times spent in non-nominal regimes on pp. 10–12 while if an electric power plant needs to generate less power it will shut down its least efficient generators, thereby increasing efficiency. The electric train can save energy (as compared to diesel) by regenerative braking and by not needing to consume energy by idling as diesel locomotives do when stopped or coasting. However, electric rolling stock may run cooling blowers when stopped or coasting, thus consuming energy.
Large fossil fuel power stations operate at high efficiency, and can be used for district heating or to produce district cooling, leading to a higher total efficiency. Electricity for electric rail systems can also come from renewable energy, nuclear power, or other low-carbon sources, which do not emit pollution or emissions.
On the other hand, electrification may not be suitable for lines with low frequency of traffic, because lower running cost of trains may be outweighed by the high cost of the electrification infrastructure. Therefore, most long-distance lines in developing or sparsely populated countries are not electrified due to relatively low frequency of trains.
A problem specifically related to electrified lines are gaps in the electrification. Electric vehicles, especially locomotives, lose power when traversing gaps in the supply, such as phase change gaps in overhead systems, and gaps over points in third rail systems. These become a nuisance if the locomotive stops with its collector on a dead gap, in which case there is no power to restart. This is less of a problem in trains consisting of two or more Railway coupling together, since in that case if the train stops with one collector in a dead gap, another multiple unit can push or pull the disconnected unit until it can again draw power. The same applies to the kind of which have a locomotive at each end. Power gaps can be overcome in single-collector trains by on-board batteries or motor-flywheel-generator systems.
In 2014, progress is being made in the use of large to power electric vehicles between stations, and so avoid the need for overhead wires between those stations.Railway Gazette International Oct 2014.
Such installations are in the Western Dedicated Freight Corridor in India where the wire height is at to accommodate double-stack container trains without the need of well-wagons.
As of 2023, the Swiss rail network is the largest fully electrified network in the world and one of only eleven countries or territories to achieve this, as listed in List of countries by rail transport network size. The percentage then continues falling in order with Laos, Montenegro, India, Belgium, Georgia, South Korea, Netherlands, and Japan, with all others being less than 75% electrified.
Overall, China takes first place, with around of electrified railway, followed by India with over of electrified railway, and continuing with Russia, with over of electrified railway. A number of countries have zero electrified railways, instead relying on diesel multiple units, locomotive hauled services and many alternate forms of transport. The European Union contains the longest amount of electrified railways (in length), with over of electrified railway, however only making up around 55% of the total railway length.
Several countries have announced plans to electrify all or most of their railway network, including Indian Railways and Israel Railways. The Trans-Siberian Railway mainly in Russia is completely electrified, making it one of the longest stretches of electrified railways in the world.
History
Classification
Standardised voltages
600V Direct current 400V 400V 600V 720V 800V 750V DC 500V 500V 750V 900V 1,000V 1,500V DC 1,000V 1,000V 1,500V 1,800V 1,950V 3kV DC 2kV 2kV 3kV 3.6kV 3.9kV 15kV AC, 16.7Hz 11kV 12kV 15kV 17.25kV 18kV 25kV AC, 50Hz (EN 50163)
and 60Hz (IEC 60850)17.5kV 19kV 25kV 27.5kV 29kV
Direct current
Overhead lines
Medium-voltage DC
Third rail
Fourth rail
Rubber-tyred systems
Alternating current
Low-frequency alternating current
Standard frequency alternating current
Three-phase alternating current
Comparisons
AC versus DC for mainlines
Electric versus diesel
Energy efficiency
Power output
Network effect
Maintenance costs
Sparks effect
Double-stack rail transport
Advantages
Disadvantages
Railway electrification around the world
See also
Notes
Further reading
Sources
English
Russian
External links
|
|